If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-15x-28=0
a = 5; b = -15; c = -28;
Δ = b2-4ac
Δ = -152-4·5·(-28)
Δ = 785
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{785}}{2*5}=\frac{15-\sqrt{785}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{785}}{2*5}=\frac{15+\sqrt{785}}{10} $
| |2x-11|=|x+1| | | 4x–5=2x+7 | | (2x-22)+(x+3)=180 | | 5^3x=0 | | 2(x–3)=-3 | | 4(x+3)=+6 | | 4x-2(x-1)=0 | | 39=3-r | | 11x2+14=47 | | 5x-2=-2(x-6) | | -2(x+3)=x-9 | | 6+2x=14-2x | | 20-2x=5+3x | | 3x(×-1)=7 | | 2x+6=3+4x | | 2x2-144=0 | | 3(3y+1)=9y+3 | | 12p+16-8p+2=24 | | Y/y+12=3/4 | | X2+10x+120=0 | | 1.75q=35 | | 2p/3=8/5 | | y=2y+11-5y | | 12x-4(3/9-4)+43-28=10 | | 3(y+-1)-13=2 | | w2=512 | | u2=729 | | w2=216 | | q2=64 | | a2=27 | | 45-5(3-7z)=20z+4(z+2) | | 5(2m+1)=4(3m+2) |